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Numerical Modelling Approach 

 Aim: model thick targets 
– Continuum model (100 mm thick panel has ~1600 plies) 

 Non-linear orthotropic continuum model 
– Non-linear EoS 
– Non-linear orthotropic strength model 
– Interactive orthotropic failure 

(Meyer & Mayer, 2010) 
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Accounting for Severe Strength Anisotropy 

 Modified Hashin failure : 
 
 

 Failure in one direction initiates softening in others 
 Sub-laminate discretization implemented 
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Constitutive Model Parameters 

 Mix of quasi-static and dynamic testing 
– Performed in collaboration with Fraunhofer EMI & DSM 

Quasi-static in-plane tension 

Dynamic out-of-plane shear 

Quasi-static out-of-plane tension 
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Qualitative Assessment 

 The model is able to capture key characteristics of UHMW-PE 
composite under ballistic impact 
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Quantitative Assessment – Finite Target V50 
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Quantitative Assessment – Semi-infinite DoP 

Numerical predictions are within 5% of experimental DoP 
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Quantitative Assessment – Bulge Formation 
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Exploitation of the Numerical Model 

 Model validated for penetrator class (i.e. FSP) 
 

 Can now be exploited to: 
– Better understand failure mechanisms 
– Investigate the influence of changing properties 
– Aid in designing the next generation of materials 
– Reduce experimental burden 
– Optimize design in multi-material armour configurations 
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Penetration Resistance 
 Two stages of penetration 

– Localised: low energy absorption 
– Bulging: high energy absorption 
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Penetration Resistance (cont.) 
 Two stages of penetration 

– Localised: High pressure, low momentum transfer 
– Bulging: low pressure, high momentum transfer 
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Transition of Penetration Mechanisms 
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Transition 

 Transition to bulging is driven by: 
– Impact velocity 
– Shock and release properties of the material 
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Influence of Impact Conditions 

↑Impact velocity  
↓Proportion under bulging 

↑Target thickness 
↑ Proportion under bulging 
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Delamination 
 Impact shock induced delamination 
 Allows material to deform, absorbing more energy 
 Increased interlaminar strength → decrease performance 
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Conclusion 
 Thick laminates of UHMW-PE composite exhibit two-stage 

penetration under ballistic impact 
 Bulging is significantly more effective than local penetration 
 Transition to bulging is influenced by the stress wave 

properties of the material and the projectile penetration rate 
 Delamination occurs ahead of the projectile and is important 

in allowing the target to exhibit extensive bulging – driven by 
the pressure wave 
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